Lecture &

Andrei Antonenko

February 19, 2003

1 Matrix equations and the inverse

1.1 Discussion of the algorithm - Part 2
Last time we proved the following result:
Lemma 1.1. 1. If the square matriz A is invertible, then its RREF is the identity matrix.

2. If we can reduce the matrix A by elementary row operations to the identity matriz, i.e.
if its RREF is identity matriz, then this algorithm gives us A~'B in the right half of the

augmented matrix.
Actually, the opposite assertion of this lemma is also true.
Lemma 1.2. Let RREF of a square matriz A be the identity matriz. Then A is invertible.

Proof. Let’s consider the process of reducing A to it’s RREF. It can be done by elementary
row operations with matrices Ey, Es, ..., Ey, i.e. (EsEs 1---Ey)A = I. From this equality we
see that the product of matrices E F,_; - - - E; satisfy the definition of the inverse for A. O

So, from these 2 lemmas we get the interesting result, which is the main result about

invertible matrices so far:

Theorem 1.3. The matriz A is invertible if and only if its RREF is the identity matrix.

2 Vector spaces

In this lecture we will introduce a new algebraic structure which is one of the most important
structure in linear algebra. This would be a set with 2 operations — addition of its elements

and multiplication of numbers by its elements.



Definition 2.1. Let k be any field. We didn’t study fields so far, so those who are not familiar
with them can just treat the letter k as another notation for R. A set V is called vector space
if there defined an operation of addition of elements of V' such that Yo,w € V v +w € V,
and an operation of multiplication of elements of k by elements of V' (often called scalar
multiplication) such that Yk € k Vv € V kv € V', and the following axioms are satisfied:

Axioms of addition:

(Al) YwyueVo+u=u+v

(A2) Ww,u,weVo+ (ut+w)=(v+u)+w

(A3) 30 € V such thatv+0=wv

(A4) Yv € V I(—v) € V such that v+ (—v) =0

Axioms of multiplication:

(M1) Va € kVu,v € V a(u+v) = au+ av

(M2) Va,bekVveV (a+bv=av+bv

(M3) Va,bekVveV a(bv) = (ab)v

(M4) VueViu=u

Elements of the vector space are called vectors.
Now we'll give a number of examples of a vector spaces.

Example 2.2 (Space R"). Let V be a set of n-tuples of elements of R. We can define

operations as follows:
Addition: (aj,as,...,a,) + (b1,ba, ..., b,) = (a1 + b1, a9 + bay ... a, + by)
Scalar multiplication: k(ai,as,...,a,) = (kay, kao, . .., kay).
The zero vectoris 0 = (0,0, ...,0) and the negative vector is —(ay, as, . .., a,) = (—ay, —as, ..., —ay).
Example 2.3 (Space P(t)). Let V be a set of all polynomials of the form
p(t) = ap + ait + agt®> + - - +a,t®, se€N.
We can define operations as follows:
Addition: Usual addition of polynomaials.

Scalar multiplication: Multiplication of a polynomial by a number.

2



The zero vector s 0 = 0.

Example 2.4 (Space P,(t)). Let V be a set of all polynomials with degree less or equal to n
of the form
p(t) =ao+art +ast’ + - +ait’, seN, s<n,

We can define operations as follows:

Addition: Usual addition of polynomials.

Scalar multiplication: Multiplication of a polynomial by a number.
The zero vector is 0 = 0.

Example 2.5 (Space M,,,). Let V be a set of all m x n-matrices. We can define operations

as follows:

Addition: Usual addition of matrices.

Scalar multiplication: Multiplication of a matriz by a number.
The zero vector is a matrix with all entries equal to 0.

Example 2.6 (Space F(X)). Let V' be a set of all functions from X to R. We can define

operations as follows:
Addition: Usual addition of functions: (f + g)(x) = f(z) + g(z) Vx € X.
Scalar multiplication: Multiplication of a function by a number: (kf)(x) =kf(z) Vo € X.

The zero vector is a function f(x) = 0Vx € X. The negative function is a function (—f)(z) =
—f(z) Vo € X.

And now we’ll give an example of a set which is not a vector space.

Example 2.7. Let’s consider the polynomials of degree 10, i.e. set of functions f(t) such that
f(t) = Qo + alt + a2t2 + -4 (llotlo.

Which azxioms of a vector space does not hold here? First of all, this set doesn’t have a zero
element, since zero polynomial’s degree is 0 — not 10. Moreover, were not always able even
to add polynomials, i.e. let’s consider f(t) = ¥, and g(t) = t* — t*°. Degree of f(t) and g(t)
are 10, but if we add them we’ll get: f(t) + g(t) =t + 12 — 1 =1 — and degree of the result

is 9, not 10. So, a set of polynomials of degree 10 is not a vector space.

We can give some properties of vector spaces:
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o If ud+ w=v+wthen u=w.

e Vkek kO=0.

Proof. k0 = k(0 + 0) = kO + k0, and so by the first property 0 = (0. O
e VuecV Ou=0.

Proof. Ou = (0 + 0)u = Ou + Ou, and so by the first property 0 = Ou. Il
o If £ # 0 and ku = 0 then u = 0.

Proof. w=1u= (k"'k)u = k~(ku) = k10 = 0. O
eVickandueV (—k)u=k(—u).

Proof. 0 = kO = k(u+ (—u)) = ku + k(—u), and 0 = Ou = (k + (—k))u = ku + (—k)u.
So, k(—u) = (—k)u. O

3 Subspaces

Definition 3.1. Let V' be a vector space. The subset W C V' s called a subspace of V if W
itself is a vector space.

To check that W is a subspace we need to check the following properties:
1.oeWw

2. VobweW v+weW

3. Vkek YueW kueW

Example 3.2. Consider a vector space R%. Then its subset W = {(0,y)|ly € R} — set of pairs
for which the first element equals to 0, is a subspace.

We can prove it. First of all, (0,0) € W, since first element of it is 0. Moreover, let
u=(0,a) € W, v=1(0,b) € W. Then their sum u+v = (0,a +b) € W since it has zero on
the first place. Now let’s multiply any vector u = (0,a) € W by any number k: ku = (0, ka),

and it belongs to W, since it has 0 on the first place. So, this is a subspace.



Example 3.3. Consider a vector space R?. Then its subset W = {(1,y)|ly € R} — set of pairs
for which the first element equals to 1, is NOT a subspace.

Here the first property is not satisfied — (0,0) doesn’t belong to W. Other properties are
not satisfied as well: (1,a) € W, (1,b) € W, but their sum (2,a+0b) & W, since it has 2 on the
first place.

Example 3.4. Consider a vector space R%. Then its subset W = {(x,y)|z,y € R, z =y} —
set of pairs for which the first element is equal to the second element (geometrically, it is a line

on the plane), is a subspace.

by

Let’s check it. First of all, ifa = (a,a) € W, and b = (b,b) € W then a+b = (a+b,a+0b) €
W. Than, (0,0) € W. Moreover, for each k € R we have k(a,a) = (ka,ka) € W. So, this is a

subspace.

One can prove that any line on the plane R? which goes through the origin is a subspace.

Moreover, any plane in the space R which contains the origin (0,0,0) is a subspace.

Example 3.5. Consider a vector space R*. Then its subset W = {(x,2%)|x € R} — set of
pairs for which the second element is equal to the square of the first element is NOT a subspace.

Let’s prove it. First of all, if (0,0) = (0,0%) € W. Now let’s consider 2 elements of this
set — (1,1) € W and (2,4) € W. Their sum (3,5) doesn’t belong to W, since 5 # 3%. So, we
showed that there are two elements sum of which doesn’t belong to the set. So, this is not a

vector space.



